Respuesta :

Use the following formula:

[tex]_nP_r=\frac{n!}{(n-r)!}[/tex]

Then, for 11P6:

[tex]\begin{gathered} _{11}P_6=\frac{11!}{(11-6)!}=\frac{11!}{5!}=\frac{5!\cdot6\cdot7\cdot8\cdot9\cdot10\cdot11}{5!} \\ _{11}P_6=6\cdot7\cdot8\cdot9\cdot10\cdot11=332640 \end{gathered}[/tex]

Hence, the result is 332640