Respuesta :

From the given question

There are given that the equation

[tex]\begin{gathered} 2x+5y=38\ldots(1) \\ x-3y=-3\ldots(2) \end{gathered}[/tex]

Now,

From the equation (1)

[tex]\begin{gathered} 2x+5y=38 \\ 2x=38-5y \\ x=\frac{38}{2}-\frac{5}{2}y \\ x=19-\frac{5}{2}y\ldots(3) \end{gathered}[/tex]

Then,

Put the equation (3) into the equation (2)

So,

[tex]\begin{gathered} x-3y=-3 \\ 19-\frac{5}{2}y-3y=-3 \\ 38-5y-6y=-6 \\ 38-11y=-6 \\ -11y=-6-38 \\ -11y=-44 \\ y=4 \end{gathered}[/tex]

Then,

Put the value of y into the equation (3)

So,

[tex]\begin{gathered} x=19-\frac{5}{2}y \\ x=19-\frac{5}{2}(4) \\ x=19-\frac{20}{2} \\ x=19-10 \\ x=9 \end{gathered}[/tex]

Hence, the value of x is 9 and y is 4.