Respuesta :
x^2-12x+7=0 move constant to other side
x^2-12x=-7 add the square of half the linear coefficient to both sides...(12/2)^2=36
x^2-12x+36=29 now the left side is a perfect square...
(x-6)^2=29 so if
f(x)=(x-a)^2+b then
f(x)=(x-6)^2-29
So a=6
x^2-12x=-7 add the square of half the linear coefficient to both sides...(12/2)^2=36
x^2-12x+36=29 now the left side is a perfect square...
(x-6)^2=29 so if
f(x)=(x-a)^2+b then
f(x)=(x-6)^2-29
So a=6
Answer:
[tex]a=6[/tex].
Step-by-step explanation:
We have been given that Lylah completes the square for [tex]f(x)=x^2-12x+7[/tex]. In order to find the minimum she must write f(x) in the general form [tex]f(x)=(x-a)^2+b[/tex].
We know that vertex form of a parabola is in format [tex]f(x)=(x-h)^2+k[/tex], where, (h,k) is the vertex of parabola.
To complete the square for given equation, we will set our given equation equals 0.
[tex]x^2-12x+7=0[/tex]
[tex]x^2-12x+7-7=0-7[/tex]
[tex]x^2-12x=-7[/tex]
Now, we will add [tex](\frac{b}{2})^2[/tex] to both sides of our given equation.
[tex](\frac{12}{2})^2=(6)^2=36[/tex]
[tex]x^2-12x+36=-7+36[/tex]
[tex]x^2-12x+36=29[/tex]
[tex]x^2-12x+6^2=29[/tex]
[tex](x-6)^2=29[/tex]
[tex](x-6)^2-29=29-29[/tex]
[tex](x-6)^2-29=0[/tex]
[tex]f(x)=(x-6)^2-29[/tex]
Upon comparing our equation by vertex form of parabola, we can see that the vertex of parabola is at point [tex](6,-29)[/tex]. Therefore, the value of 'a' for f(x) is 6.