Respuesta :
[tex](-5p^4z^6u)^3[/tex]
[tex]= (-5)^3p^{4 \times 3}z^{6 \times 3} u^3[/tex]
[tex]= -125p^{12}z^{18} u^3[/tex]
---------------------------------------------------------------------------------------------------
[tex]\text {Answer = } -125p^{12}z^{18} u^3 \text { (Answer C) }[/tex]
---------------------------------------------------------------------------------------------------
[tex]= (-5)^3p^{4 \times 3}z^{6 \times 3} u^3[/tex]
[tex]= -125p^{12}z^{18} u^3[/tex]
---------------------------------------------------------------------------------------------------
[tex]\text {Answer = } -125p^{12}z^{18} u^3 \text { (Answer C) }[/tex]
---------------------------------------------------------------------------------------------------
Answer:
[tex]-125p^{12}z^{18}u^3[/tex]
Step-by-step explanation:
We have been given an expression [tex](-5p^4z^6u)^3[/tex]. We are asked to simplify our given expression.
Using exponent rule [tex](ab)^c=a^c\cdot b^c[/tex], we can rewrite our expression as:
[tex](-5)^3(p^4)^3(z^6)^3(u)^3[/tex]
Using exponent rule [tex](a^b)^c=a^{b\cdot c}[/tex], we can rewrite our expression as:
[tex]-125p^{4*3}z^{6*3}u^3[/tex]
[tex]-125p^{12}z^{18}u^3[/tex]
Therefore, the simplified form of our given expression is [tex]-125p^{12}z^{18}u^3[/tex] and option C is the correct choice.